首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   7篇
  国内免费   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   3篇
  2016年   5篇
  2015年   1篇
  2014年   2篇
  2013年   7篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   4篇
  2008年   1篇
  2007年   2篇
  2006年   5篇
  2005年   4篇
  2004年   3篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1980年   2篇
  1974年   1篇
  1973年   1篇
排序方式: 共有72条查询结果,搜索用时 15 毫秒
1.
Compounds having antimicrobial activity were synthesized from sodium alginate, the main constituent of brown algae. Sodium alginate was oxidized with sodium periodate to get alginate dialdehyde (ADA). FTIR spectrum of the ADA gave very small peak characteristic for aldehyde groups at 1720 cm−1, indicating that the aldehyde group is masked somehow. It may be hydrated, involving at hemiacetal formation or hemialdol, similar to cellulose dialdehyde. Two methods were used for the condensation of ADA with o-phenylenediamine analogs to obtain the final products. The first method was stirring at room temperature and the second method was heating in microwave. The microwave method gave higher yield and shorter reaction time than the other method. The condensation reaction is considered as a shiff-base formation and the proposed mechanism was suggested. The condensation products were characterized by FTIR and UV spectra. The antimicrobial potency for five of these products in addition to the used alginate and to the precursor amines was evaluated against four pathogenic fungi and six pathogenic bacteria species.  相似文献   
2.
亢玉静  赵文  魏杰 《生态学报》2015,35(4):1037-1044
采用实验生态学方法,研究了温度(T=16、19、22、25、28℃)、盐度(S=5、10、15、20、25)对西藏拟溞总超氧化物歧化酶(TSOD)、谷胱甘肽过氧化物酶(GSH-PX)活力以及脂质过氧化产物丙二醛(MDA)含量的影响。结果表明:温度和盐度能够诱导西藏拟溞抗氧化应激反应,胁迫24h后,SOD、GPX活性及MDA含量在28℃、盐度20时均达到最高值,分别为(37.18±1.97)U mg-1μg-1、(75.1±9.96)U mg-1μg-1和(12.24±2.12)nmol mg-1μg-1;48h后,高温低盐组(25—28℃、5—10)和高温高盐组(25—28℃、20—25)SOD、GPX活性及MDA含量显著高于其他处理组(P0.05),在28℃,盐度5时均达到最大值,分别为(19.25±3.48)U mg-1μg-1、(59.95±4.66)U mg-1μg-1和(4.98±0.66)nmol mg-1μg-1;温度、盐度以及这两个因子之间对西藏拟溞体内SOD、GPX活性和MDA含量均有极显著影响(P0.01)。  相似文献   
3.
双醛淀粉的制备与应用   总被引:8,自引:0,他引:8  
介绍了双醛淀粉优良的物化、生化性能,及其在近二十年来被广泛应用的状况,如应用于蛋白质化学、酶的固定化、药物化学等领域.提出以拟均相体系制备双醛淀粉的方法,反应条件温和,可提高氧化速度,可改善产品性能。  相似文献   
4.
以新疆特色食用菌裂盖马鞍菌为材料,研究裂盖马鞍菌乙醇提取物、乙酸乙酯、氯仿、石油醚萃取物对小鼠体内的抗氧化活性,分高(2g/kg)、中(1g/kg)、低(0.2g/kg)三个剂量对小鼠灌胃给药测定小鼠肝脏和血清中丙二醛(MDA)含量和超氧化物岐化酶(SOD)活力。结果表明,与阴性对照(生理盐水)相比裂盖马鞍菌提取物能明显提高小鼠肝脏和血清中SOD的活力,降低MDA的含量(P〈0.01);与阳性对照维生素E(VE)(1g/kg)相比乙醇提取物、其他溶剂萃取物高浓度(2g/kg)作用极显著(P〈0.01);与维生素C(VC,1g/kg)相比乙醇提取物高浓度(2g/kg)作用极显著(P〈0.01),提示裂盖马鞍菌提取物具有抗氧化活性。  相似文献   
5.
In experiments on male white mice we initiated the induction of peroxidation of lipids by lead acetate, tetrachloromethane, sodium nitrite, or SOVOL (a mixture of polychlorinated biphenyls). Then the animals received intragastral injections of pectin isolated from the seagrass Zostera marina, in the form of a 1% gel, at 100 mg/kg for 2 weeks. It has been found that the low etherified pectin normalizes the level of malonic dialdehyde and the activity of glutathione reductase and glutathione peroxidase in the liver.  相似文献   
6.
Cellulose fibres from bagasse were oxidized by sodium periodate in sulphuric acid media at positions 2 and 3 of the anhydroglucose unit to produce dialdehyde cellulose. The aldehyde groups of the dialdehyde cellulose were able to react with amino groups of a glucoamylase to form covalent bonds and result in a dialdehyde cellulose immobilized enzyme. The optimum pH of this immobilized enzyme and free enzyme were in the range of 3.0–5.0 and 3.5–5.0, respectively. The optimum temperature for both the free and immobilized enzymes was 60–65 °C. The relative remaining activity of the immobilized enzyme was 36% and its stability was very good, since it could be reused for over 30 cycles. Its activity decreased from the first to the seventh reuse cycles, due to the slow detachment of non-covalently bound enzyme. However, activity tended to stabilize after the seventh cycle of reuse, indicating very stable covalent binding between the enzyme and dialdehyde cellulose.  相似文献   
7.
Low-molecular-weight aldehydes (glyoxal, methylglyoxal, 3-deoxyglucosone) generated on autooxidation of glucose under conditions of carbonyl stress react much more actively with amino groups of L-lysine and epsilon-amino groups of lysine residues of apoprotein B-100 in human blood plasma low density lipoproteins (LDL) than their structural analogs (malonic dialdehyde (MDA), 4-hydroxynonenal) resulting on free radical oxidation of lipids under conditions of oxidative stress. Glyoxal-modified LDL aggregate in the incubation medium with a significantly higher rate than LDL modified by MDA, and MDA-modified LDL are markedly more poorly absorbed by cultured human macrophages and significantly more slowly eliminated from the rat bloodstream upon intravenous injection. Studies on kinetics of free radical oxidation of rat liver membrane phospholipids have shown that ubiquinol Q(10) is the most active lipid-soluble natural antioxidant, and suppression of ubiquinol Q(10) biosynthesis by beta-hydroxy-beta-methylglutaryl coenzyme A reductase inhibitors (statins) is accompanied by intensification of lipid peroxidation in rat liver biomembranes and in LDL of human blood plasma. Injection of ubiquinone Q(10) protects the human blood plasma LDL against oxidation and prevents oxidative stress-induced damages to rat myocardium. A unified molecular mechanism of atherogenic action of carbonyl-modified LDL in disorders of lipid and carbohydrate metabolism is discussed.  相似文献   
8.
Xanthomonas oryzae pv. oryzae (Xoo) is a plant bacterial pathogen that causes bacterial blight (BB) disease, resulting in serious production losses of rice. The crystal structure of malonyl CoA-acyl carrier protein transacylase (XoMCAT), encoded by the gene fabD (Xoo0880) from Xoo, was determined at 2.3 Å resolution in complex with N-cyclohexyl-2-aminoethansulfonic acid. Malonyl CoA-acyl carrier protein transacylase transfers malonyl group from malonyl CoA to acyl carrier protein (ACP). The transacylation step is essential in fatty acid synthesis. Based on the rationale, XoMCAT has been considered as a target for antibacterial agents against BB. Protein-protein interaction between XoMCAT and ACP was also extensively investigated using computational docking, and the proposed model revealed that ACP bound to the cleft between two XoMCAT subdomains.  相似文献   
9.
Dialdehyde starch obtained by periodate oxidation from potato starch was converted into its disemicarbazone (DSC), dithiosemicarbazone (DTSC), dihydrazone (DHZ) and dioxime (DOX). The Cu(II) complexes of these compounds were prepared and characterized by Raman and EPR spectra, as well as by the measurements of magnetic susceptibility. EPR investigations showed that two types of complexes with different surroundings of copper centres existed in each starch derivative. Besides nitrogen atoms of the CN moiety and sulphur atoms of the CS moiety, also oxygen atoms from starch hydroxyl groups and/or water molecule were proposed as the coordination sites for the central copper ions.  相似文献   
10.
Erythrocyte osmotic fragility (O.F.), acetylcholinesterase (AChE) activity,and the level of malonyl dialdehyde (MDA) of control, mefenamic acid treated, and mefenamic acid with vitamin E treated rats were investigated. Administration of mefenamic acid to albino rats brought about a significant increase in the osmotic fragility of red cells and a significant (p<0.01) decrease in the activity of AChE. We have also observed increased red cell level of MDA and decreased cholesterol (Chl), hemoglobin (Hb), and reduced glutathione (GSH) content. Supplementation of vitamin E to the mefenamic acid treated rats restored the O.F., AChE activity, level of MDA, and Chl, Hb, and GSH content almost to normal. These observations suggest that mefenamic acid causes functional impairment of red cell membrane, while vitamin E shows its protective role in maintaining normal red cell functions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号